ENANTIOSELECTIVE SYNTHESIS OF D-erythro-SPHINGOSINE

Bruno Bernet and Andrea Vasella*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

<u>Abstract</u>: D-erythro-sphingosine (4) and the 3-amino-2-hydroxy-L-erythro isomer $\underline{15}$ were synthesized in a highly enantio- and regioselective manner by a modified Sharpless asymmetric epoxidation.

Several syntheses of the racemic *erythro*-sphingosine are known. $^{1,2,3,4)}$ The D-*erythro* enantiomer <u>4</u> has been obtained by resolution of racemic <u>4</u> $^{5)}$ or of one of its synthetic intermediates. $^{6)}$ The syntheses from an enantiomerically pure starting material - from L-serine $^{7,8)}$ and from D-glucose $^{9)}$ - contain each a low yield step: the former in the addition of a trans vinylalane to an aldehyde derived from L-serine, the latter in the preparation of 3amino-3-deoxy-di-O-isopropylidene-*a*-D-allofuranose. We desired to obtain <u>4</u> by an enantioselective procedure on a gram scale. Sharpless' asymmetric epoxidation, $^{10)}$ known for its high enantioselectivity, appeared a good method. $^{11)}$ Attachment of a potential *N*-nucleophile to the hydroxy group should then allow a regioselective opening of the oxirane ring (see Scheme 1).

Scheme 1

To the best of our knowledge, no Sharpless epoxidation of a conjugated dienol such as <u>1</u> has been published. Under standard conditions, ¹⁰⁾ <u>1</u>⁴⁾ was initially transformed into a single product, which subsequently decomposed to several unidentified products. ¹²⁾ This behaviour was rationalized by assuming first an epoxide migration ¹³⁾ of the initially obtained epoxide <u>2</u> to a secondary allylic alcohol and then its further epoxidation to an unstable diepoxy alcohol. Propargylic alcohols are known to be epoxidized much slower

than allylic alcohols.¹⁴⁾ Hence, the enynol 6 (mp 56°C) $^{15)}$ was chosen as starting material (see Scheme 2). It was obtained in 80% yield, along with the dimer 23 (mp 55°C, 11%) by the Sonogashira reaction ¹⁶) of pentadecyne (5) ¹⁷) with (E)-3-bromo-prop-2-en-1-ol. ^{18,19}) Sharpless epoxidation of 6, catalyzed by titanium tetra-t-butoxide ²⁰) and D-(-)-diethyl tartrate in 2,3dimethyl-2-butene/CH_Cl_ 1:1 21) yielded the desired epoxide 7 (72% with 97% ee 22), the *t*-butyl ether 26 (8%) and starting material 6 (4%). 23 Two recrystallisations from hexane at 5°C gave enantiomerically pure 7 (mp 55°C, $[\alpha]_{D}^{25}$ -2.2° (c=2, CHCl₃), 64% from <u>6</u>). Treatment of the trichloroimidate <u>8</u> with triethyl aluminium in diethyl ether led to a single product 11 (mp 71°C, $[\alpha]_{p}^{25}$ -128.7° (c=1, CHCl₂), 78% from 7). The ¹H NMR spectra of <u>11</u> and of its acetate 12 suggested a dihydro oxazine structure. Assuming a trans configuration, the small coupling constants (J_{4.5} = 2.5 Hz in <u>11</u> and 2 Hz in <u>12</u>) could only be explained by a pseudoaxial arrangement of the substituents. The trans configuration and a pseudoaxial conformation in the solid state were evident from an X-ray analysis of 11. 24) Acidic hydrolysis and Li/NH, reduction furnished the slightly impure L-erythro 15 (90%). The amorphous amino diols 13 and <u>15</u> were characterized as their triacetates <u>14</u> (mp 83°C, $[\alpha]_D^{25}$ +49.5° (c=1, CHCl₃)) and <u>16</u> (mp 94°C, $[\alpha]_D^{25}$ +30.2° (c=1, CHCl₃)).

To obtain the desired regioisomer, the benzyl urethane <u>10</u> (mp 61°C, $[\alpha]_D^{25}$ +10.3° (c=1, CHCl₃)) was prepared in 92% yield *via* the *p*-nitrophenyl carbonate <u>9</u> (one-pot reaction) and treated with potassium *t*-butoxide in *t*-butanol at -5°C according to Kishi. ²⁵⁾ This leads to the desired oxazolidinone <u>17</u> (mp 52°C, $[\alpha]_D^{25}$ -26.9° (c=1, CHCl₃)), which, however, decomposed partially during the reaction. A better yield of <u>17</u> (89%) was obtained by treating <u>10</u> with 5 equivalents of sodium bis-trimethylsilyl amide in oxolane at -20°C. Lithium in liquid NH₃ at -20°C cleaved the *N*-benzyl group, while the (selective) reduction of the triple bond was incomplete even after a second Birch reduction leading to the alcohols <u>19</u> (mp. 73°C, $[\alpha]_D^{25}$ -1.8° (c=2, CHCl₃), 79% yield)²⁶⁾ and <u>18</u> (mp. 67°C, $[\alpha]_D^{25}$ -5.9° (c=1.9, CHCl₃), 19% yield), which were separated by column chromatography. Hydrolysis of the carbamates gave in almost quantitative yield the amino diols <u>4</u> and <u>21</u>, respectively. They were characterized as the triacetates <u>20</u> (mp. 103°C, $[\alpha]_D^{25}$ -12.9° (c=1, CHCl₃); lit. 8): mp. 103.5-104.5°C, $[\alpha]_D^{24}$ -12.9° (CHCl₃)) and <u>22</u> (mp. 64°C, $[\alpha]_D^{25}$ -55.4° (c=1, CHCl₃)) ²⁷⁾. This synthesis leads to D-*erythro*-sphingosine in 6 steps from 5 and in an overall yield of <u>33</u>%.

Acknowledgment: We thank the Swiss National Science Foundation and the "Stiftung Dr. Joachim de Giacomi" for financial support.

<u>Conditions</u>: a) 1.3 eq. (E)-3-bromo-prop-2-en-1-ol, 0.005 eq. $PdCl_2(P\phi_3)_2$, 0.02 eq. CuI, $HNEt_2, 40^{\circ}C$, 5h (80%); b) 1.9 eq. $Ti(OBu^t)_4$, 2 eq. D-(-)-diethyl tartrate, 2.2 eq. Bu^tOOH , 2,3-dimethyl-2-butene/ CH_2Cl_2 1:1, -20°C, 4h (72%); c) 3 eq. CCl_3CN , 3.5 eq. DBU, toluene, r.t., 10 min; d) 1.2 eq. $CICOO-C_6H_4$ pNO_2 , $pyridine/CH_2Cl_2$, r.t., 70 min; e) 3 eq. $BnNH_2$, CH_2Cl_2 , r.t., 10 min (92% from 7); f) 4 eq. $AIEt_3$, Et_2O , $O^{\circ}C \rightarrow r.t.$, 30 min (78% from 7); g) CH_3OH $/H_2O/conc. H_2SO_4$ 50:24:1, reflux, 70 min; h) Li/NH_3 , HMPA, -10°C, 1h (90% from 11); i) 5 eq. $NaN[Si(CH_3)_3]_2$, THF, -20°C, 90 min (89%); j) Li/NH_3 , -20°C, 90 min. (79% after 2 sequential reductions); k) EtOH/2N NaOH, 80°C, 150 min; acetylations: Ac_2O , NEt_3 , cat. DMAP, CH_2Cl_2 .

References and Footnotes

- For leading references see a) D. Shapiro, Chemistry of Sphingolipids, Hermann, Paris, 1969. b) Y.-T. Li and S.-C. Li, Adv. Carbohydr. Chem. Biochem. 40, 235 (1982).
- 2) C.A. Grob and F. Gadient, Helv. Chim. Acta 40, 1145 (1957).
- 3) R.R. Schmidt and R. Kläger, Angew. Chem. 94, 215 (1982).
- 4) R.S. Garigipati and S. Weinreb, J. Am. Chem. Soc. 105, 4499 (1983).
- 5) D. Shapiro, H. Segal and H.M. Flowers, J. Am. Chem. Soc. 80, 1194 (1958).
- 6) Y. Shoyama, H. Okabe, Y. Kishimoto and C. Costello, J. Lipid Res. <u>19</u>, 250 (1978).
- 7) H. Newman, J. Am. Chem. Soc. 95, 4098 (1973).
- 8) P. Tkaczuk and E.R. Thornton, J. Org. Chem. 46, 4393 (1981).
- 9) E.J. Reist and P.H. Christie, J. Org. Chem. 35, 4127 (1970).
- 10) T. Katsuki and K.B. Sharpless, J. Am. Chem. Soc. 102, 5974 (1980).
- D-erythro-Dihydrosphingosine has been synthesized using Sharpless' asymmetric epoxidation: K. Mori and T. Umemura, *Tetrahedron Lett.* <u>22</u>, 4433 (1981).
- 12) The reaction proceeded noticeably slower than a similar epoxidation of geraniol.
- 13) a) J.G. Buchanan and H.Z. Sable, Selec. Org. Transform. 2, 1 (1972).
 b) G.B. Payne, J. Org. Chem. 27, 3819 (1962).
- 14) B. Plesnicăr in "Oxidation in Organic Chemistry Part C", ed. W.S. Trahanovsky, Academic Press, New York, 1978, pp. 211-294.
- 15) All new products gave satisfactory analytical data.
- 16) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett. 1975, 4467.
- 17) J. Gigg, R. Gigg and C.D. Warren, J. Chem. Soc. (C) 1966, 1882.
- 18) F. Bohlmann and W. Rotard, Liebigs Ann. Chem. 1982, 1216.
- 19) The reaction of 5 with epibromhydrin or with acrolein followed by an acid catalyzed rearrangement gave a high yield of $\underline{6}$ as E/Z-mixtures in a ratio of 5:3 and 4:1, respectively.
- 20) R.C. Mehrotra, J. Am. Chem. Soc. 76, 2266 (1954).
- 21) $\underline{6}$ is insoluble in CH₂Cl₂ at -20°C.
- 22) Determined by HPLC chromatography of the corresponding MTPA ester: J.A. Dale, D.L. Dull and H.S. Mosher, J. Org. Chem. <u>34</u>, 2543 (1969). The enantioselectivity did not noticeably depend on the batch size (up to 3 grams).
- 23) Using titanium tetraisopropoxide 7 (48%), 6 (23%) and 24 (19%) were isolated. Acetylation of 24 and 26 gave the diacetates 25 and 27.
- 24) We thank Dr. J.H. Bieri and R. Prewo for the X-ray analysis.
- 25) N. Minami, S.S. Ko and Y. Kishi, J. Am. Chem. Soc. 104, 1109 (1982).
- 26) For racemic 19 see 4).
- 27) For racemic 22 see 2).

(Received in Germany 2 September 1983)